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Key Message: This study was conducted across three 

districts and two seasons to assess three commercial wheat 

varieties (Kingbird, Abay and Adola-1) and twelve 

advanced genotypes. The findings revealed that genotypes 

G-6, G-1, and G-5 exhibited high yield potential, stability, 

and disease tolerance, making them promising candidates 

for release in the study areas. 

 

Abstract  

 

A field experiment was conducted at Adami Tulu 

Agricultural Research Center, as well as in the Lume and 

Dugda Districts, during the main cropping seasons of 2022 

and 2023. The purpose of this study was to identify stable 

and high yielder bread wheat genotypes in the East Shewa 

Zone across three distinct districts. These districts exhibit 

varying environmental conditions and altitudes, with a 

diversity of soil types characterized by differing 

compositions. A total of fifteen genotypes were precisely 

evaluated utilizing a randomized complete block design 

with three replications. Analysis of variance revealed 

significant effects of genotype, environment, and their 

interaction on grain yield. Additive Main Effects and 

Multiplicative Interaction (AMMI) analysis indicated that 

the environment significantly influenced yield, accounting 

for 48.78% of the total variation, followed by genotype 

(23.89%) and genotype × environment interaction (16.19%). 

The first two interaction principal components (IPCA-I and 

IPCA-II) explained 44.6% and 27.7% of the genotype × 

environment interaction, respectively, and were used to assess 

stability. Based on stability parameters (ASV and GGE-Biplot) 

and mean grain yield, genotypes G-6, G-1, and G-5 were 

identified as stable and high-yielding candidates for potential 

release. AMMI and GGE-biplot analyses revealed specific 

adaptation patterns among genotypes, with some performing 

better in particular environments. These findings highlight the 

importance of multi-environmental trials for accurate genotype 

evaluation. Given their yield and stability, genotypes G-6, G-1, 

and G-5 were promising resources for improving bread wheat 

productivity in East Shewa Zone and similar agro-ecologies. 

We recommend further validation trials and farmer 

participatory evaluations to ensure acceptability and 

performance under on-farm conditions. Additionally, these 

superior genotypes could be used as parents in future breeding 

programs. © 2024 The Author(s) 
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Introduction  
 

Wheat, being a staple food for over 2.5 billion individuals 

stands as the most extensively cultivated crop on an 

overwhelming 217 million hectares, yielding a remarkable 

752 million tonnes annually (Iqbal et al., 2018; Abbas & 

Shafique, 2019; Alamgeer et al., 2022). Its remarkable 

adaptability allows for cultivation in a myriad of 

environments, spanning from cold arctic regions to tropical 

climates, and from below sea level to rising altitudes 

reaching 4,500 m in Tibet (Senbeta & Worku, 2023). 

Ethiopia emerges as Africa's second-largest wheat 

producer, boasting a yield of 5.5 Mt, which accounts for 

21.7% of the continent's total production and encompasses 

18.3% of its harvested area (Senbeta & Worku, 2023). So 

far, wheat production in Ethiopia is predominantly 

governed by a subsistence smallholding farming system, 

and its productivity is hindered by complicated biophysical 

and socio-economic challenges (Nigus et al., 2022). Wheat 

production and productivity have perennially lagged, resulting 

in food production trailing behind population growth (Hodson 

et al., 2020). In order to bridge the huge difference between 

wheat consumption and production, the nation has had to rely 

on significant imports of wheat for nearly half a century 

through both commercial means and food aid. Presently, the 

consumption of wheat is increasing at a higher rate compared 

to other food crops, driven by rapid population expansion, 

rising incomes, urbanization, climate variations, and evolving 

preferences towards wheat-based food choices (Sununtnasuk, 

2013). 

      The primary objective of accessing stable wheat varieties is 

to account for environmental effects and delineate interactions. 

Enhanced wheat genotypes are assessed through multi-

environment trials, which gauge their performance across 

diverse settings and aid in pinpointing the optimal genotypes 

for specific environments. Nonetheless, this procedure may 
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diminish selection efficiency in various breeding programs 

due to the less predictable nature of traits being evaluated 

within the genotype-environment interaction (GEI) 

framework. These traits cannot be solely deciphered 

through main effects (genotype or environment) and 

necessitate a more comprehensive analysis (Rebollo et al., 

2023). GEI holds substantial value for breeders as it assists 

in determining whether to cultivate varieties for all 

environments or specific ones (Bridges, 1989). The 

occurrence of GEI emerges when distinct cultivars or 

genotypes exhibit varying responses to diverse 

environments. Research indicates that comprehending the 

environmental and genetic factors underpinning this 

interaction, and evaluating their importance in G × E 

systems, profoundly impacts plant breeding (Magari et al., 

1993). G × E interaction is universally manifested when 

appraising genotypes across multiple environments (Aliyi 

et al., 2022). 

      AMMI stability value (ASV) and yield stability index 

(YSI) are crucial in deciphering genotype-environment 

interactions (GEI) as they pertain to yield stability and 

regression coefficients (Becker & Leon, 1988). 

Summarizing GEI relationships (Zobel et al., 1988) 

through these indices also enhances the accuracy of yield 

estimates; by augmenting replicates two- to five-fold, 

experiment costs can be minimized by reducing 

replications or test environments, thereby allowing for 

more treatments or improved genotype selection (Cross et 

al., 1990). In regions of Ethiopia where bread wheat is 

cultivated, the escalating issue of low moisture stress is a 

growing concern. To tackle this challenge, a wheat-

breeding initiative formulated product concepts and 

identified genotypes that demonstrate low susceptibility to 

moisture stress, early maturation, and other favorable 

agronomic traits (Borena et al., 2021). The demand for 

wheat in developing nations is anticipated to surge 

significantly by 2050 (Shiferaw et al., 2013). In Ethiopia, 

wheat production faces hindrances due to substantial 

genotype by environment interaction (GEI) (Gedisa & 

Abebe, 2020; Gedisa et al., 2021; Verma & Singh, 2021) 

and a deficiency of stable, high-yielding varieties suited to 

diverse agro-ecological zones. Additional challenges 

encompass biotic and abiotic stresses, sub-optimal farming 

practices, monoculture cultivation, and socio-economic 

factors (Habte et al., 2014; Hodson et al., 2020). Therefore, 

genotype by environmental interaction trials were intended 

with the objectives to estimate the magnitude of genotype 

by environment interactions and to identify high-yielding 

and stable bread wheat genotypes in the study areas. 

 

Materials and Methods 
 

Study area 

 

A multi-environmental field trial assessed 12 advanced 

bread wheat selections and improved varieties, including 

Abay, Kingbird, and Adola-1, for yield and related traits on 

smallholder farms across three districts (Adami Tulu 

Agricultural Research Center, Dugda, and Lume) in the East 

Shewa Zone during the 2022-2023 crop season under rain-fed 

conditions. Adami Tulu Agricultural Research Center 

(ATARC) is located 167 km south of Finfine on the way to 

Hawass Road, situated at a latitude of 7°9’N and longitude of 

38°7’E, at an altitude of 1650 meters above sea level. ATARC 

receives an average annual rainfall of 760.9 mm, which is 

distributed in a bimodal pattern extending from February to 

September, with a dry period from March to June separating 

the "short" and "long" rainy seasons. The mean minimum and 

maximum temperatures are 12.6 °C and 27 °C, respectively. 

The soil is characterized as fine sandy loam, consisting of 34% 

sand, 48% clay, and 18% silt, with a pH of 7.88. Dugda 

district, located 130 km from the capital at 8°1'N and 38°75'E, 

has an altitude of 1950 meters above sea level. It experiences 

an average annual rainfall of 903 mm, concentrated in July and 

August, followed by a prolonged dry season. The mean 

minimum and maximum temperatures are 9°C and 26 °C, 

respectively. The soil is characterized as dark sandy loam 

(33% sand, 40% clay, 27% silt) with a pH of 7.6 (Dugda 

Woreda Office of Agriculture [DWOA], 2014). Lume district, 

situated between 8°38'42"N and 39°14'32"E, has an altitude of 

2100 meters above sea level and dominant soil types of Sandy 

Loam (59%) and Clay Loam (41%) with a pH of 7.8. It 

receives an average annual rainfall of 1000.9 mm, primarily in 

July and November. The mean minimum and maximum 

temperatures are 10 °C and 24 °C, respectively. 

 

Experimental design and management 

 

A randomized complete block design (RCBD) was 

implemented to manage known variation and enhance 

treatment comparisons by evaluating each genotype under 

uniform conditions within blocks. Plots measured 3 square 

meters (1.2 meters × 2.5 meters), consisting of six rows spaced 

0.2 meters apart and 2.5 meters long, with a 1-meter interval 

between blocks. The two outer rows of each plot functioned as 

borders. Fifteen genoypes were used as planting material 

(Table 1). The recommended seed and fertilizer rate in the area 

involved the application of NPS and urea at 100 kg/ha and 150 

kg/ha, respectively, along with a seed rate of 150 kg/ha. 

Standard weeding practices and other prescribed agronomic 

methods were consistently implemented across all sites.  

 

Data collection  

 

Data regarding the agro-morphological characteristics of the 

bread wheat genotypes were gathered following the protocols 

outlined by Anderson et al. (2012) and the descriptors for 

barley (International plant Genetic Resource Institute [IPGRI], 

2010). To obtain data on an individual plant basis, ten plants 

chosen at random from the central four rows within each plot 

were specifically marked, and information was collected from 

these selected plants, with the resulting average values being 

meticulously recorded. Plant height was determined as the 

mean height (in centimeters) of ten randomly selected plants 

per plot, measured from the soil surface to the tip of the spike 

(excluding the awns) of the bread wheat at the stage of 
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maturity. Peduncle length was calculated as the average 

length (in centimeters) from the node to the tip, measured 

from ten randomly chosen plants in the central four rows of 

each plot. Spike length, representing the average length (in 

centimeters) from the base to the tip (excluding the awns) 

of the main plant, was measured from ten random plants 

per plot. Kernel number per spike, indicating the average 

number of kernels on the main tiller, was meticulously 

counted from ten randomly chosen plants in each plot. 

Days to heading were defined as the number of days from the 

emergence of seedlings to when 75% of the plot had developed 

heads. Days to maturity represented the number of days from 

seedling emergence to when 75% of the plot had attained 

maturity. Grain yield, quantified as the grain yield (in kg/ha) of 

the four central rows, was adjusted to account for 12.5% 

moisture content. Additionally, the thousand kernel weight was 

determined as the weight (in grams) of a thousand-seed sample 

per plot, adjusted to 12.5% moisture content.

  

Table 1 Lists of fifteen bread wheat genotypes used in the study  

S.No. Codes Genotypes/Pedigree 

1 Abay Standard Check 

2 Adola-1 Standard Check 

3 G- 1 ATTILA*2/PBW65//PFAU/MILAN 

4 G-2 SERI.1B//KAUZ/HEVO/3/AMAD/4/FLAG-2 

5 G-3 ATTILA*2/PBW65 

6 G-4 ATTILA*2/PBW65//PFAU/MI 

7 G-5 ATTILA*2/PBW65//PFAU/MI 

8 G-6 ETBW 94546 

9 G-7 SERI.1B//KAUZ/HEVO/3/AMAD/4/P 

10 G-8 ATTILA*2/PBW65//PFAU/MI 

11 G-9 SERI.1B//KAUZ/HEVO/3/AMAD/4/PFAU/MILAN 

12 G-10 ETBW 9129 

13 G-11 ETBW 954776 

14 G-12 ETBW 95454576 

15 Kingbird   Standard check 

 

Statistical analysis 
 

AMMI Model: AMMI is utilized to analyze genotype-

environment intelligent (GEI) for design recognizable 

proof and commotion diminishment. Its work is to 

recognize key breeding situations and select related test 

locales to decide which phenotype are best suited for 

adjustments (Angela et al., 2016). 

            ∑        

 

 

     

Where Yij is the grain abdicate of the i-th genotype within 

the j-th environment, µ is the amazing cruel, gi and ej are 

the genotype and environment deviation from the terrific 

cruel, separately, ʎk is the eigenvalue of the vital 

component examination (PCA) pivot k, Ƴik and δjk are the 

genotype and environment central component scores for 

hub k, N is the number of principal components held 

within the show, and Ɛij is the remaining term.  

 

GGE- biplot: GGE biplot analysis, a visual statistical tool 

for plant breeding and agronomy, analyzes genotype by 

environment interactions (G×E) in multi-environment trials 

(METs). Based on the biplot concept and GGE framework, 

it identifies superior, stable genotypes and visualizes 

complex relationships between genotypes, environments, 

and their interaction with the GGE framework (Yan et al., 

2000). 

 

AMMI Stability Value (ASV): In plant breeding, the Additive 

Main Effects and Multiplicative Interaction (AMMI) model's 

"ASV" statistic assesses a genotype's stability across 

environments. Lower ASV values, calculated from IPCA1 and 

IPCA2 scores (Purchase, 1997), indicate greater stability and 

consistent performance. Conversely, higher ASV values 

suggest sensitivity to environmental changes and potentially 

inconsistent performance. It was calculated using the IPCA1 

and IPCA2 based on the following formula:   

 

ASV = 

√                                
                 

   
 

Where SSIPCA1/SSIPCA2 is the weight given to the IPCA1-

value by dividing the IPCA1 sum of squares by the IPCA2 sum 

of squares.  

 

 

Genotype Selection Index (GSI): A genotype which has 

higher yielded and superior ones may not always the most 

stable. To combine higher yielder and stability is important to 

identify stable genotypes. Therefore, a genotype selection 

index (GSI) was calculated for each genotype based on ranks 

of both mean grain yield (RYi) and AMMI stability value 

(RASVi) across environments and calculated by the 

succeeding expression: 

GSIi = RASVi + RYi 
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Results and Discussion  
 

 

Combined analysis of variance 

 

Pooled ANOVA revealed significant (P < 0.01) effects of 

genotype, environment, and their interaction on grain yield 

(Table 2) consistent with previous bread wheat G×E 

studies (Alemu et al., 2019; Borena et al., 2021; Nigus et 

al., 2022; Mulualem et al., 2024). Environment explained 

the largest proportion of variance (48.78%), followed by 

genotype (23.89%) and G×E interaction (16.49%) (Table 

4). This significant G×E interaction indicates inconsistent 

genotypic performance across environments (Ayalneh et 

al., 2014), potentially due to rank changes or altered magnitude 

of genotypic differences (Asmare et al., 2020). Therefore, 

identifying stable genotypes is critical for breeding, 

particularly when environmental factors impact genetic 

potential. The strong influence of environment on wheat 

genotypes has also been documented by others (Borena et al., 

2021; Megerssa et al., 2024). However, the G×Y interaction 

(Genotype by year) was non-significant indicating that the 

studied genotypes do not show significant variations yield 

performance, when grown in different years. It simplifies 

breeding by reducing the need for specific adaptation to yearly 

environmental fluctuations and facilitating the selection of 

reliably performing genotypes and improving the efficiency of 

breeding recommendations and selections.

 

 

Table 2 ANOVA for combined mean grain yield of bread wheat genotypes over locations and year 

Source of variation d.f. Sum of squares Mean square v.r. F pr. 

Replications 2 60.53 30.26 0.43 0.652 

Genotype (G) 14 3489.34 249.24 3.54 <.001 

Location (L) 2 4101.77 2050.88 29.09 <.001 

Year (Y) 1 19413.43 19413.43 275.4 <.001 

G×L 28 3213.67 114.77 1.63 <.001 

G×Y 14 1265.15 90.37 1.28 0.222 

L×Y 2 2615.03 1307.51 18.55 <.001 

G×L×Y 28 2485.33 88.76 1.26 <.001 

Residual 178 12547.55 70.49   

Total 269 49191.8    

G = Genotype, L = Location, Y = Year, G×L = Genotype by location, G×Y = Genotype by year, L×Y = Location by year,  

G×L×Y = Genotype by location by year interactions 

 

Mean performance of the other agronomic traits 

 

The study's findings revealed significant variation in the 

number of days to heading and maturity among the 

different bread wheat genotypes in the study area. The 

mean number of days to heading for the genotypes ranged 

from 53.1 to 59.18 days with an overall average of 59.9 

days (Table 3). This suggests that nearly all genotypes 

exhibited a narrow range of heading dates. Furthermore, 

there was minimal variation among the genotypes 

regarding days to maturity, indicating that the tested 

genotypes can be categorized into similar maturity groups. 

Genotypes that head and mature earlier may be preferred in 

areas with shorter growing seasons, while those with later 

maturity may be more suitable for regions with longer 

growing seasons. Plant height ranged from 48.74 to 71.9 

cm, with the minimum recorded in genotype G-12 and the 

maximum observed in Adola-1 and G-3. Regarding their 

reaction to diseases, G-6, G-5, and G-1 showed more 

disease resistance than the other genotypes, while G- 4 and 

G- 2 show less tolerance to major wheat diseases.  

Therefore, the genotype exhibiting greater disease 

resistance also yielded more than the others, making such 

genotypes crucial for bread wheat production in that region.  

 

 

Performance of bread wheat genotypes across tested 

environment 
 

Table 4 shows significant environmental variation observed in 

bread wheat grain yield. The grain yield ranged from 2683.3 

kg/ha ATARC during 2023 to 5408.0 kg/ha Dugda during 

2022 with having the grand mean of 3598.6 kg/ha. Similar 

study was reported by Alemu et al. (2019) large variation 

within different lines of bread wheat across different 

environment. Genotype G-6 is the highest yielder than that of 

other genotypes (4312.1 kg/ha), while  G-12 is the lowest 

yielder genotype (3024.6 kg/ha). G-6, G-1, and G-5 

consistently outperformed other genotypes, while G-94 showed 

the lowest yield potential, aligning with previous findings 

Dinsa & Balcha, 2024; Mulualem et al., 2024). Varying yield 

rankings across locations indicate significant crossover 

interactions (Purchase et al., 2000; Yan et al., 2007), likely 

driven by genetic potential. A genotype which has consistent 

performance across the study area will be selected for the 

production of the area.

 

Table 3 Combined mean agronomic performance and disease reaction of 15 bread wheat genotypes tested in regional variety 

trials at Adami Tulu, Dugda and Lume during the year 2022-2023 
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Genotype DH DM NS/p PH (cm) PL (cm) SL (cm) YLD 

(kg/ha) 

Disease 

Stem 

rust 

Leaf 

rust 

Abay 54.5
a
 90.17

a
 48.84

bc
 62

c
 31.38

bc
 8.906

cde
 3670.4 15ms 20ms 

Adola-1 56.28
ab

 94.39
ab

 55.54
a
 71.9

a
 35.71

a
 9.744

ab
 3454.3 10mr 10mr 

G-1 58.17
ab

 87.39
ab

 49.29
bc

 68.46
ab

 32.09
bc

 9.139
bcd

 4135.4 10mr 10mr 

G-2 59.18
b
 87.17

ab
 54.69

ab
 66.85

b
 33.12

abc
 9.539

bc
 3204.0 20s 15ms 

G-3 55.28
ab

 97.39
ab

 55.54
a
 71.9

a
 35.71

a
 9.744

ab
 3657.6 20mr 10mr 

G-4 56.83
a
 89.1

a
 44.83

c
 68.06

ab
 30.41

cd
 8.753

de
 3393.7 30s 15ms 

G-5 54.67
ab

 89.11
a
 45.99

c
 58.5

c
 28.33

de
 8.347

ef
 4045.1 5mr 10mr 

G-6 55.44
ab

 89.11
a
 43.89

c
 57.4

c
 27.23

e
 8.567

de
 4312.1 tmr 5mr 

G-7 53.5
b
 87.89

ab
 43.96

c
 48.74

d
 23.71

f
 7.93

f
 3092.3 15mr 5mr 

G-8 54.61
ab

 98.56
bc

 45.21
c
 70.77

ab
 32.65

bc
 8.942

cde
 3682.3 10mr 15ms 

G-9 57.17
a
 86.67

b
 55.71

a
 69.45

ab
 33.55

ab
 10.25

a
 3294.8 15mr 20ms 

G-10 55.39 88.26 48.8 64.22
c
 30.82 9.01 3610.9 5mr 15ms 

G-11 54.7
ab

 89.11
a
 45.99

c
 58.53

c
 28.33

de
 8.347

ef
 3767.1 10mr 10mr 

G-12 53.10
b
 87.89

ab
 43.96

c
 48.74

d
 23.71

f
 7.931

f
 3024.6 15mr 10mr 

Kingbird 56.83
a
 89.11

a
 43.89

c
 57.4

c
 35.71

a
 9.744

ab
 3634.0 10mr 10mr 

Mean 55.9 88.26 48.8 64.22 30.82 9.01 3598.8   

CV 6.4 4.6 17.4 11.2 11.3 1.43 22.44   

LSD 5.44 4.49 13.73 12.6 6.67 10.2 445.21   
CV = Coefficient of variation, LSD = Least significant difference, DH = Days to heading, DM = Days to maturity, NS/p = Number of 

seed/plants, PH = Plant height (cm), PL = Panicle length (cm), SL = Spike length (cm), YLD = Grain yield (kg/ha) 

 

Table 4 Mean grain yield (kg/ha) per location and years 

Genotype ATARC Dugda Lume Mean 

 2022 2023 2022 2023 2022 2023 

Abay 3013.3 2775.0 4946.7 2975.0 5458.3 2854.0 3670.4 

Adola-1 3503.3 2750.0 3708.3 2950.0 4985.0 2829.0 3454.3 

G- 1 3925.0 2608.3 6933.3 3475.0 4850.0 3020.7 4135.4 

G-2 4078.3 2141.7 4150.0 2341.7 4291.7 2220.7 3204.0 

G-3 3383.3 2750.0 6233.3 2616.7 4500.0 2462.3 3657.6 

G-4 3591.7 3016.7 4150.0 2883.3 3291.7 3429.0 3393.7 

G-5 3975.0 2625.0 6516.7 3491.7 4791.7 2870.7 4045.1 

G-6 3691.7 3183.3 7158.3 3493.3 5150.0 3195.7 4312.1 

G-7 3408.3 2608.3 4900.0 2475.0 2808.3 2354.0 3092.3 

G-8 3850.0 2708.3 5648.3 2908.3 4191.7 2787.3 3682.3 

G-9 4406.7 2575.0 5525.0 2441.7 2500.0 2320.7 3294.8 

G-10 4111.7 2808.3 5958.3 2575.0 3758.3 2454.0 3610.9 

G-11 4581.7 2700.0 6041.7 2900.0 3600.0 2779.0 3767.1 

G-12 2560.3 2333.3 4500.0 2533.3 3941.7 2279.0 3024.6 

Kingbird   4275.0 2666.7 4750.0 2866.7 4500.0 2745.7 3634.0 

Mean 3757.0 2683.3 5408.0 2861.8 4174.6 2706.8 3598.6 

LSD 0.05 1269.4 645.3 1520.3 662.0 1551.0 605.6 445.2 

CV (%) 24.32 17.312 20.23 16.63 26.74 16.10 22.44 

 

Additive main effects and multiplicative interaction 

 

The combined analysis of variance and AMMI analysis is 

shown in Table 5. The AMMI model analysis of variance 

(ANOVA) for grain yield showed highly significant 

differences (P ≤ 0.01) for genotypes, environments and 

genotypes by environments interactions. The first two 

IPCA1 and IPCA2 of genotype by environment interaction 

(G×E) were highly significant (P ≤ 0.01), showing 49.44% 

(IPCA1) and 37.44% (IPCA2) of the G×E interaction, 

cumulatively accounting for 86.88%. This strong fit 

justifies using the first two components, consistent with 

findings that the primary G×E pattern is captured in IPCA1 

(Mattos et al., 2013; Regis et al., 2018; Dagnachew et al., 

2020). Capturing most of the G×E sum of squares in the first 

principal component is crucial for accurate insights (Purchase 

et al., 2000). The high percentage of G×E variation explained 

by IPCA1 and IPCA2 suggests a relatively simple interaction 

pattern where genotypes and environments with similar IPCA 

scores exhibit similar responses. While IPCA1's substantial 

contribution aligns with previous research, interpreting both 

IPCA1 and IPCA2 is crucial for clear understanding because 
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IPCA2 explains a significant portion of the interaction. 

Further investigation into environmental and genotypic 

factors associated with these principal components could 

elucidate the drivers of these interactions.

 

Table 5 The additive main effect and multiplicative interaction analysis of variance 

Sources of variation d.f. Sum of squares Mean square Ex. SS% 

Total 269 49192.3   

Genotypes 14 9489.23 39703.34** 23.89 

Environments 5 16130.56 33062.54*** 48.78 

Block 12 1651.33 47541.56* 3.47 

Interactions 70 6964.32 42228.55** 16.49 

IPCA1 18 3443.65 191.61** 49.44 

IPCA2 16 2608.63 162.97** 37.44 

 

AMMI stability value (ASV) and genotype selection 

index (GSI) 
 

Lower AMMI stability values (ASV) indicate greater 

stability, while higher values suggest instability and 

indicated in Table 6. AMMI analysis revealed that G-5, G-

6, G-1, and G-12 as the most stable genotypes with lower 

ASV values, suggesting wider adaptation (Table 6). 

However, Adola-1 and G-8 exhibited the highest ASV 

values, indicating specific adaptation and least stability. 

Since, stability alone is insufficient for selection. The 

genotype selection index (GSI), which integrates yield and 

stability, is crucial for identifying superior genotypes. In 

this study, GSI identified G-6, G-1, and G-5 as top 

performers with both stability and high grain yield, consistent 

with findings by Alemayehu et al. (2024); Dinsa & Balcha 

(2024); Megerssa et al. (2024) for durum wheat and Alemu et 

al. (2019); Nigus et al. (2022) for bread wheat. These 

genotypes are recommended for further evaluation and 

potential release due to their desirable combination of yield 

potential and stability. Multi-location trials over several years 

are recommended to validate these results and assess their 

performance across diverse environments. Such trials will 

provide a more robust evaluation of their stability and 

adaptability. Furthermore, disease resistance and grain quality 

should be considered alongside yield and stability for long-

term sustainability and marketability.

 

Table 6 IPCA1, IPCA2 scores, AMMI stability value, and Genotype Selection Index of bread wheat genotypes 

Genotype Mean yield Ryi IPCA1 IPCA2 ASVi RASVi GSI 

Abay 36.7 7 -2.0394 -1.82893 2.9183 11 18 

Adola-1 34.54 10 -3.20448 0.15618 65.74927 15 25 

G- 1 41.35 2 1.04907 -1.66247 1.789426 3 5 

G-2 32.04 13 -1.40666 0.72685 2.817648 10 23 

G-3 36.58 6 0.88203 -1.96253 2.002166 6 12 

G-4 33.94 12 -1.31068 2.21372 2.945796 12 24 

G-5 40.45 3 0.87972 -1.27521 1.412258 1 4 

G-6 43.12 1 1.0012 -1.10114 1.42871 2 3 

G-7 30.92 14 0.63808 2.41559 2.421463 9 23 

G-8 36.82 4 1.298 -0.05992 28.11762 14 18 

G-9 32.95 11 2.02826 2.33901 2.926487 13 24 

G-10 36.11 9 1.32469 0.40263 4.376911 7 16 

G-11 37.67 5 1.54128 1.10073 2.42265 8 13 

G-12 30.25 15 -1.04615 -0.64825 1.808461 4 19 

Kingbird 36.34 8 -1.09496 0.68373 1.882109 5 13 

RYi = Rank of food barley yield, IPCA = Interaction principal component axis, ASV = AMMI stability value, ASVi = Rank of 

AMMI stability value, GSI = Genetic selection index 

 

Evaluation of genotype based on the GGE-biplot model  
 

Genotype stability was estimated using Average 

Environment Coordination (AEC) methods (Yan, 2001; 

Yan & Chase, 2001). The average environment, defined by 

the mean PC1 and PC2 values across all conditions, is 

represented as a circle, with the Average Ordinate 

Environment (AOE) as a perpendicular line to the Average 

Environment Axis (AEA) through the origin. The yield 

increases along the AEA genotype G-6, G-1, and G-5 

indicated along AEA which were being the highest yielding 

and conversely genotype Adola-1, G-12, and G-2 place against 

AEA which show lower yields (Fig. 1). Stability, determined 

by proximity to the AE axis and the center of concentric circles 

(Yan & Tinker, 2006), indicates closeness to the ideal 

genotype. G-6, G-1, and G-5 are the most stable within the 

high-yielding group (Fig. 1). Ideal genotypes, such as G-6 and 

G-1, display high and consistent yields. Genotypes further 

from the AE axis, like G-12, are less stable due to greater yield 

fluctuations. The AOE differentiates genotypes with similar 
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yields but different adaptation patterns; those above the 

AOE are adapted to above-average conditions, while those 

below are suited to below-average conditions. This 

information enables targeted selection based on 

environmental context. Further research should investigate the 

environmental factors driving genotype-by-environment 

interactions for improved genotypes recommendations and 

breeding strategies.

 

 
                  Fig. 1 GGE biplot based on genotypes focused scaling for comparison of genotypes for their yield                  

                             potential and stability 

 

 

GGE biplot analysis 

 

The GGE biplot ('mean vs. stability') showed that PCA1 

and PCA2 accounted for 53.16% and 30.4% of GGE 

variation, respectively (Fig. 2), enabling visualization of 

bread wheat genotype yield and stability. With SVP=1, the 

average environment coordinate (AEC) intersects the 

biplot origin. Following Yan and Rajcan (2002), 

environmental performance is represented by PCA1 and 

PCA2 mean scores. The AEC and SVP facilitate genotype 

evaluation based on both yield and stability (Fig. 2). Genotypes 

are arranged along the AEC abscissa line in ascending order of 

yield; G-6, followed by G-1, displayed the highest yield and 

stability. Genotypes farther from the AEC are less stable, with 

distance from the AEC indicating instability. G-2 and G-5, 

distant from the AEC, showed lower stability. The GGE biplot 

effectively differentiates genotypes by yield potential and 

environmental responsiveness, offering valuable insights for 

breeding high-yielding and stable bread wheat varieties.
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                     Fig. 2 GGE ranking bi-plot shows means performance and stability of bread wheat genotypes  

 

Conclusion  

 
Analysis of genotype by environment interaction (GEI) is 

crucial for improving bread wheat (Triticum aestivum) 

productivity and yield stability in the East Shewa Zone. 

Significant grain yield variations confirmed GEI, 

highlighting the importance of genotype adaptability. GGE 

bi-plot, AMMI stability analysis, and genotypic selection 

index values identified G-6, G-1, and G-5 as promising 

genotypes due to their high yield, stability, and disease 

tolerance, making them potential candidates for release in 

the study areas and similar agro-ecologies. These 

genotypes offer a valuable resource for breeding climate-

resilient wheat varieties with enhanced adaptability and 

yield performance. Further investigation into the 

physiological and genetic traits contributing to the stability 

and yield of G-6, G-1, and G-5 is warranted to optimize 

selection in future breeding cycles. The disease tolerance 

of these genotypes is particularly important for ensuring 

stable yields and reducing reliance on chemical controls. 

Integrating disease resistance genes from these lines into 

breeding programs will contribute to minimizing yield 

losses. Increased and more reliable yields will benefit 

farmers in the East Shewa Zone, enhancing their 

livelihoods and food security. Continued multi-location 

trials and participatory variety selection are recommended 

to validate performance and accelerate adoption of these 

promising genotypes. 
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